On two-dimensional surface attractors and repellers on 3-manifolds

نویسندگان

  • V. Grines V. Medvedev
  • E. Zhuzhoma
چکیده

We show that if f : M3 → M3 is an A-diffeomorphism with a surface two-dimensional attractor or repeller B andM2 B is a supporting surface for B, then B = M2 B and there is k ≥ 1 such that: 1) M2 B is a union M 2 1 ∪ . . .∪M 2 k of disjoint tame surfaces such that every M2 i is homeomorphic to the 2-torus T 2. 2) the restriction of f to M2 i (i ∈ {1, . . . , k}) is conjugate to Anosov automorphism of T 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of attractors

On every compact 3-manifold, we build a non-empty open set U of Diff(M) such that, for every r ≥ 1, every Cr-generic diffeomorphism f ∈ U ∩Diffr(M) has no topological attractors. On higher dimensional manifolds, one may require that f has neither topological attractors nor topological repellers. Our examples have finitely many quasi attractors. For flows, we may require that these quasi attract...

متن کامل

Homoclinic Classes and Nitude of Attractors for Vector Elds on N-manifolds

A homoclinic class of a vector eld is the closure of the transverse homoclinic orbits associated to a hyperbolic periodic orbit. An attractor (a repeller) is a transitive set to which converges every positive (negative) nearby orbit. We show that a generic C 1 vector eld on a closed n-manifold has either innnitely many homoclinic classes or a nite collection of attrac-tors (repellers) whose bas...

متن کامل

Global fixed points for centralizers and Morita’s Theorem

We prove a global fixed point theorem for the centralizer of a homeomorphism of the two dimensional disk D that has attractor-repeller dynamics on the boundary with at least two attractors and two repellers. As one application, we show that there is a finite index subgroup of the centralizer of a pseudo-Anosov homeomorphism with infinitely many global fixed points. As another application we giv...

متن کامل

On Lorentzian two-Symmetric Manifolds of Dimension-fou‎r

‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.

متن کامل

On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004